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Abstract  
The Lower Congo basin’s Albian – Early Cenomanian Pinda group is the most productive carbonate reservoir 

within the West African margin basins. However, the understanding of its diagenetic features is very limited. 

Core samples obtained from the Democratic Republic of Congo offshore section of the formation were 

petrographically analysed to image the sedimentary facies along with diagenetic processes and links to 

reservoir quality. The sedimentary facies obtained indicate a dominant lagoon sedimentation within the oolitic – 

siliciclastic ramp. Diagenetic processes detected include micritization, dolomitization, dissolution, cementation, 

and compaction. Diagenetic links to reservoir quality within the facies is established in the dominant 

occurrence of moldic pores which have been occluded either by calcite or dolomite cement, leaving three facies 

with poor reservoir quality. The facie exempted from this class possesses a fair reservoir quality linked to 

microporosity within its sandstone domain. These observations should serve as important considerations for 

future reservoir characterization studies within the Pinda group.  
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I. Introduction 
Carbonate reservoirs make up a large portion of the world’s hydrocarbon reservoirs and are 

characterized by heterogeneities which influence hydrocarbon storage capability. These heterogeneities are due 

to a variation in depositional environment, diagenesis, and tectonism (Jardine & Wilshart, 1982; Holtz et al., 

1992; Ehrenberg et al., 1998; Cerepi et al., 1999; Ehrenberg, 2004; Zou & Tao, 2007; Bera & Belhaj, 2016; 

Hosa & Wood, 2017; Rashid et al., 2017). Majority of carbonate deposition takes place in tropical shallow 

marine settings because such environments meet the requirements of abiotic and biotic processes which lead to 

carbonate rock formation. These requirements or controls on carbonate rock formation include salinity, 

temperature, and nutrient availability (Schlager, 1999; Singh & Joshi, 2020).  

Since diagenetic alteration involves the flow of chemically active fluids through permeable rock 

(Alsharhan and Magara 1995), high chemical sensitivity of carbonate minerals means they are easily altered 

during diagenesis thus making diagenetic alteration a major influence on hydrocarbon flow within carbonate 

reservoirs (Major & Holtz, 1997; Mehrabi & Bonab, 2014). Diagenetic alteration of carbonate rocks results in 

the acquisition/destruction of various pore types as alteration continues from initial sediment burial to deep 

burial (Mazzullo, 1994; Saller et al., 1994), and diagenesis influence on flow is also found in its controls on 

apertures of fractured carbonates (Wennberg et al., 2016).  

Porosity – permeability relationships between carbonate reservoirs vary with textures induced by 

diagenesis (Woody et al., 1996), and fractures (Ehrenberg & Nadeau, 2005; Ehrenberg et al., 2008; Zhou et al., 

2018). The porosity developed within a carbonate reservoir varies with diagenesis undergone by each 

stratigraphic interval (Ehrenberg et al., 1998; Brigaud et al., 2014), and carbonate reservoir pore geometry is 

diagenetically controlled (Cerepi et al., 2003). Thus, the reservoir quality of a carbonate reservoir can be 

determined by analysing the evolution of its porosity and permeability with diagenesis. 

Over the years, various rock samples have been analysed using different methodologies which includes 

petrographic analysis of thin sections and isotope analysis (e.g. Nader & Swennen, 2004), which can be 

combined with an analysis of fluid inclusions/X-ray diffraction (e.g. Ehrenberg et al., 1998; Madi et al., 2000; 

Lavoie & Chi, 2001; Ehrenberg, 2004; Wierzbicki et al., 2006; Wilson et al., 2007; Machel & Buschkuehle, 

2008; Vandeginste et al., 2009) and/or scanning electron microscopic (SEM) imaging and gas injection 

measurements (e.g. Woody et al., 1996; Bonab et al., 2010;  Jiang et al., 2018). 
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The basins of the West – Central African coast which extend from Cameroon to Namibia are major 

hydrocarbon provinces with hydrocarbon production from turbidite reservoirs, carbonate platform, and pre-salt 

reservoirs (Burwood et al., 1995; Brownfield & Charpentier, 2006). Clastic reservoirs have majority of the 

region’s recoverable reserves,  followed by carbonate reservoirs of Pinda group in the Lower Congo basin  

which are ranked sixth amongst hydrocarbon systems in Africa with an estimated 8.2 billion barrels of 

recoverable oil and gas (Liu et al., 2008). However, due to the proprietary nature of data obtained within the 

region, knowledge of the carbonate platform’s reservoir quality has been limited. 

In this study, we used petrographic and SEM imaging, along with routine analysis (porosity, 

permeability and grain density) of core samples obtained from two exploratory wells, to image the reservoir 

quality of a carbonate reservoir within offshore Democratic Republic of Congo (DRC). The study also provides 

insights into the nature of subsurface diagenetic features of carbonate reservoirs within the study area which 

could provide better information for use in reservoir characterisation and modelling studies.  

 

II. Geologic Setting 
The study area which lies within the Lower Congo basin in offshore Democratic of Congo (Fig. 1a) 

belongs to a group of coastal basins within the Western Africa continental margin which formed due to the 

separation of Gondwana in the Late Cretaceous (Vidal et al., 1975; Valle et al., 2001; Charlou et al., 2004; 

Moulin et al., 2005; Chaduteau et al., 2009), resulting from the northward rifting of the South Atlantic which 

began from the Late Jurassic (Nürnberg & Müller, 1991; Eagles, 2007; Torsvik et al., 2009; Moulin et al., 2010; 

Marcano et al., 2013). 

 

 
Fig. 1 (a) Geologic map showing regional geologic setting (modified from Leturmy, 2003 and Jatiault et al., 

2017). Note location map insert. (b) Lower Congo basin geologic cross-section (a-b in fig 1a) showing basin rift 

series. 

 

These basins which elongate from the Cameroun volcanic line to the Walvis ridge, are characterized by 

pre-separation lithology comprising Precambrian basement overlain by Late Jurassic – Aptian terrestrial 

sediments before rifting caused an invasion of the sea from the South Atlantic which resulted in a transition 

from continental to marine sediment deposition. These events were then followed by shallow water evaporite 

deposition due to the Walvis ridge obstruction of seawater invasion as the South Atlantic opened during the 



Petrographic and Diagenetic Evaluation of Carbonate Reservoir Quality: A Case study of the ..  

DOI: 10.9790/0990-0805021526                                    www.iosrjournals.org                                          17 | Page 

Aptian, and transgressive marine deposition from the Late Aptian (Vidal et al., 1975; Uchupi & Emery, 1975; 

Ruiter, 1979; Jansen et al., 1984; Moulin et al., 2005; Liu & Li, 2011).  

Furthermore, there was a post-separation regressive continental sediment deposition in the Cenomanian 

and extensive marine transgression from the Turonian (Franks and Nairn 1973), to regressive continental 

deposition as sea levels reduced during the Paleogene (Franks & Nairn, 1973; Vidal et al., 1975; Uenzelmann-

Neben et al., 1997; Liu & Li, 2011). While the Oligocene – Miocene was characterized by clastic deposition 

across the shelf (Cole et al., 2000), subsequent periods were mainly characterized by the development of deep-

water turbidite systems (Huang 2018). 

The Congo river’s control on sedimentation on the Congo – Angola continental margin can be found in 

the formation of the hydrocarbon rich Congo fan (Holtvoeth et al., 2003; Chaduteau et al., 2009; Baudin et 

al.,2010), and its underlying sedimentary layer (Anka et al., 2010). Droz & Rigaut, (1996) also attributed 

renewed continental deposition within the area during the Cenozoic to draining of the Congo river into the 

Atlantic along with an increase in river bedload transport due to onshore structural deformation and uplift. 

However, an affirmation of gravity driven tectonics dominance on the area’s post-rift deformation and 

sedimentation (e.g. Valle et al., 2001; Rouby et al., 2003), supports Leturmy, (2003) assertion of climate playing 

a lesser role. Dickson et al., (2003) also noted the presence of reservoir and source rocks within the margin 

along with uplift, which were controlled by faults and fractures extending from the mid-ocean ridge. However, 

Séranne & Anka, (2005) countered the previously stated assertion by positing the influences of climate on 

sedimentation rate being proven by its positive link to uplift and gravity tectonics within the study area. The 

interplay between climate and tectonics on source rock and reservoir rock sedimentation within the Lower 

Congo basin was also supported by subsequent studies (e.g. Lentini et al., 2010; Marcano et al., 2013; Wang et 

al., 2016; Li et al., 2020).  

The evaporite layers in the Lower Congo basin are distributed within the Continental shelf (Liu & Li, 

2011), and the basin stratigraphy (Fig. 2) attests to a possession of  pre-rift, post-rift, syn-rift sediments and 

Aptian evaporites with the depocenter described by Leturmy, (2003) as migrating from the continental margins 

to the Congo fan during the Tertiary.   

According to Rouby et al., (2003) within the Congo-Angola continental margin; pre-evaporite 

sedimentation commenced with Lower Carboniferous to Trias-Jurassic fluvio-lacustrine sediments, followed by 

tectonically active Neocomian to Mid-Barremian clastic sedimentation, overlain by Barremian to Middle Aptian 

sedimentation. They also described post-evaporite lithology within the study area as commencing with the 

Lower Albian progradation of a carbonate platform on the Aptian evaporites, before they are episodically 

overlain by shale and silt during the Upper Albian. 

Hydrocarbon generation has been proven in the area’s pre-evaporite source rocks (e.g. Burwood et al., 

1990; Burwood et al., 1995). The petroleum potential of thick post-evaporite organic rich source rocks within 

the continental margin has also been positively inferred in some studies (e.g. Uchupi & Emery, 1975; Dickson et 

al., 2003). Anka et al., (2010) also deduced the study area as being characterized by a basinward decrease in 

source rock maturity, and Baudin et al., (2010) used the gas prone status of Congo fan sediments to adduce a 

similar nature for the area’s deep sea source rocks. However, while Marcano et al., (2013) described a 

Palaeocene – Eocene hydrocarbon generation for pre-evaporite source rocks of the Lower Congo basin, Salvi et 

al., (2013) found an Oligocene – recent oil generation for a deep water pre-evaporite source rock unit. Post-

evaporite source rocks are mostly immature with oil-prone Iabe formation as the only one linked with post-

evaporite hydrocarbon generation (Cole et al. 2000).  

Formation of the Lower Congo basin’s post-evaporite hydrocarbon fields is dominated or influenced by 

salt tectonism (Fig. 1b) (Liu & Li, 2011; Oluboyo et al., 2014; Wenau, Spiess et al., 2015; Ge et al., 2019), 

which also hinders exploitation of its petroliferous pre-evaporite reservoirs (Jameson et al., 2011). Hence, 

despite good reservoir quality affirmations of the pre-evaporite Toca carbonate formation sealed by the 

overlying Aptian Loeme salt (see; Beglinger et al., 2012; Frixa et al., 2014), the basin’s main carbonate 

reservoir is the Albian – earliest Cenomanian Pinda group whose hydrocarbons are sourced from the Barremian 

Bucomazi group (Cole et al., 2000; Liu et al., 2008), and sealed by the overlying Iabe shale (Fig. 2).  
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Fig. 2. Lower Congo basin lithostratigraphy (modified from Anka et al., 2009 and Marcano et al., 2013) 

 

This belongs to the post-evaporite carbonate platform which formed due to Northward Albian – 

Turonian marine deposition on the Aptian evaporites of the West African coastal basins (Brownfield and 

Charpentier 2006). The Pinda group within the Lower Congo basin is an oolitic-siliciclastic ramp system 

characterised by both transgressive and regressive tract facies (Eichenseer et al., 1999).  

 

III. Methodology 
This study provides preliminary insights into the reservoir quality of a carbonate reservoir in offshore 

DRC. Core samples were obtained from two exploratory wells with depths sampled based on possible reservoir 

intervals detected on well logs (Fig. 3). Four core samples were systematically selected for conventional core 

analysis (CCA), petrographic analysis, Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) 

analysis (whole rock and clay mineral) all undertaken at a commercial laboratory.  

Routine core analysis (RCA) involved porosity measurements undertaken with helium pycnometer via 

utilization of gas expansion principles, along with permeability and grain density measurements. For whole rock 

XRD analysis, dried cuttings of the samples were ground before being weighed and micronized at 5 – 10 

microns. The resulting slurry was crushed and dried again before being presented to an X-ray beam from a 

copper anode (at 35kV, 30mA), with samples run between 2
°
 and 60

°
 2θ at a 0.05

°
/sec step size. For clay mineral 

XRD, weighed cuttings were micronized at less than 2 microns before being separated via ultrasound shaking 

and centrifugation. This was followed by filtering and drying of clay suspension to obtain the XRD mount. The 

samples were later saturated with ethylene glycol vapor and heated (380
°
c for 2hrs and 550

°
c for 1hr) before 

being scanned with X-ray from a copper anode (at 40kV, 30mA). While first scan was undertaken between 3
°
 

and 35
°
 2θ at a 0.05/sec step size, and the second is done between 24 – 27

°
 2θ at a 0.02/2sec step size to enhance 

kaolinite/chlorite peak detection. 
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For thin section preparation, trims of the samples are impregnated with blue-dyed epoxy resin for pore 

identification, stained with Alizarin red S and potassium ferrocyanide for carbonate mineral delineation, and 

sodium cobaltinite for potassium feldspar identification. The Embry & Klovan, (1971) scheme for petrographic 

analysis, which was modified by Dunham, (1962) was used. The carbonate mineral crystallinities and sorting 

was obtained from Scholle, (1978), with limestone porosity terms proposed by Choquette & Pray, (1970). 

For SEM analysis, sample chips were glued to a mounting stub and coated with gold before presented 

to a Zeiss Leo 1450VP instrument used to take images with a 20kV backscatter detector, with elemental analysis 

later done via INCA software.  

 

IV. Results 
4.1 LITHOLOGIC FACIES 

 
Fig. 3. Correlation of possible reservoir units from the well logs. GR: Gamma ray, VSH: Clay volume, PHIX: 

Porosity log, SWT: Total water saturation log. 

 

Facie types observed from the core samples include sandy molluscan-metazoan-pelletal packstone, 

partly recrystallised micritic arkosic sandstone, slightly sandy recrystallized bioclastic wackestone, and sandy 

molluscan packstone. All carbonate facies were mineralogically dominated by calcite with detrital clastic grains 

for all samples revealed as consisting quartz, potassium feldspar and plagioclase along with traces of clay 

minerals (Fig. 5f, 6c, 6e, 6f). Facies detected include Sandy molluscan-metazoan-pelletal packstone, Partly 

recrystallised micritic arkosic sandstone, Slightly sandy recrystallized bioclastic wackestone, and Sandy 

molluscan packstone. The facies were mainly characterized by an original micrite matrix which had 

recrystallized to a non-ferroan calcite microspar, and porosity types which include moldic (Fig 4c, 5a, 5c, 5e), 

intraparticle (Fig. 6d, 6f), intergranular (Fig. 4d, 6a, 6g), interparticle (Fig. 6c, 6f) and micro-porosity (Fig. 6a, 

6e). 
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Fig. 4. (a) A packstone domain showing locally common secondary biomouldic porosity (BP) which has been 

partly infilled by mildly ferroan dolomite (FD) in some cases. Note micrite pellets (Mi), and bivalve shell 

fragments (BS). (b) A metazoan fragment now consisting of medium non ferroan calcite spar (CS), leaving 

canal structures (C) originally filled with micrite, and now recrystallized to non-ferroan calcite microspar. (c) 

Secondary biomouldic porosity (2P) created by the dissolution of bioclasts. Also shows the almost entire 

occlusion of earlier biomouldic porosity by non-ferroan calcite spar (CS). (d) A sandstone pocket within the 

sandy molluscan packstone exhibiting primary intergranular porosity (IP) and microporosity (Mp) within its 

possibly argillaceous patchy matrix. Also shows gypsum as a brine precipitate upon drilling (Gp). 
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Fig. 5. (a) Locally abundant secondary biomouldic porosity (2P) created by the complete dissolution of mollusc 

shells, within the recrystallized micrite matrix (M). Note also the local almost complete infilling of this 

secondary porosity by late stage non ferroan calcite spar crystals (CS). (b) A localised pocket of sandstone 

displaying primary intergranular porosity (IP). This porosity is seen to be locally partly occluded by a patchy 

detrital microporous clay matrix (CM). Also note a planktonic foraminifer whose chambers are filled entirely by 

pyrite and hematite (F), and a collophane fish fragment (CF). The microspar matrix (Ms) is also depicted. (c) An 

area of recrystallized wackestone composed largely of microspar (MS), hosting biomouldic porosity (BP), partly 

occluded by medium crystalline calcite spar (CS). (d) Scan showing euhedral microspar (Ms) and later medium 

crystalline calcite spar (CS), with rare flaky smectitic/illitic clays (Cl). (e) Euhedral calcite microspar (Ms), with 

later medium crystalline calcite spar (CS) Also shows dolomite (D), detrital K feldspar (Ksp) and a possible 

biomould (Bm). (f) Compact microspar (Ms) with rare smectitic/ illitic clays (Cl), detrital quartz (Q), and an 

isolated macropore (Mp). 
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Fig. 6. (a) An area of arkosic sandstone with a relative lack of recrystallized micrite matrix, displaying local 

primary intergranular porosity (IP). Microporosity (Mp) is also present within the patchy clay and/or 

micrite/microspar matrix. Note also mildly ferroan dolomite (FD). (b) An area of sandstone which grades to the 

bioclastic sandstone in fig. 4b. Note the absence of intergranular porosity due to the recrystallized micritic 

matrix. Any apparent porosity is artefact porosity. (c) Detrital grains, quartz (Q), K feldspar (Ksp) and Ilmenite 

(I) not observed in thin section, in a micritic matrix (M). Scan also shows interparticle porosity (P). (d) Scan 

showing a general view, depicting intraparticle porosity in a planktonic foram (IP) and detrital K feldspar (Ksp) 

supported by a matrix composed of micrite and clays (MC). (e) A general view of detrital K feldspar (Ksp) 

supported by micrite (M) and clays (C). Note the microporosity (Mp). (f) Intraparticle porosity (IP) within a 

planktonic foraminifer test, surrounded by micrite (M), also with authigenic dolomite (D), calcite microspar 

(MS) and detrital flaky illitic clays (Cl). (g) A general view of the partly recrystallized micritic arkosic 

sandstone. Also shows very rare isolated primary intergranular porosity (IP) in an area with locally less matrix. 

Note the occlusion of pore space by mildly ferroan dolomite cement (D).  



Petrographic and Diagenetic Evaluation of Carbonate Reservoir Quality: A Case study of the ..  

DOI: 10.9790/0990-0805021526                                    www.iosrjournals.org                                          23 | Page 

4.2 DIAGENETIC FEATURES 

Micrite grains which recrystallized to non-ferroan calcite were dominant and micritization observed 

indicates allochem alteration by microbes was of a time-consuming nature. Calcite and dolomite cementation 

were observed along with dissolution of bioclasts as some resulting pores were infilled with either ferroan 

dolomite (Fig. 4a, 6a) or non-ferroan calcite (Fig. 5a, 5c). The infills also indicate dolomitization and 

cementation were concomitant late stage processes. Chemical compaction is seen in point to point grain 

contacts, with mechanical compaction observed in deformed grain shapes, and microfractures. 

 

4.3 POROSITY 

RCA revealed sandy molluscan-metazoan-pelletal packstone as having the lowest porosity and 

permeability of 6.3% and 5.5mD, respectively. Despite visually estimated 1-2% secondary porosity due to a 

complete bioclast dissolution, low porosity and permeability could be due to the occlusion of moldic porosity by 

non-ferroan calcite spar mosaics which was followed by calcite cementation (Fig. 4a). 

Visible porosity within the partly recrystallised micritic arkosic sandstone was moderate. Its primary 

porosity largely occurred as patchy intergranular porosity (Fig. 6a, 6g), and was visually estimated at 5% overall 

with traces of intraparticle porosity (Fig. 6d, 6f). Unconnected secondary biomouldic porosity within the facie, 

visually estimated at 1-2%, developed from the complete dissolution of fragments of mollusc shells but was 

later partly to entirely occluded by mildly ferroan dolomite crystals (Fig. 6g). 

Visible porosity within the slightly sandy recrystallized bioclastic wackestone was moderately high, 

and visually estimated at 10-15%. Primary porosity was low and occurred only as intergranular porosity 

(visually estimated at 3%) within the sandstone pockets which do not appear to be generally well connected 

(Fig. 5b). Within the pockets, a patchy detrital clay matrix had occluded some primary porosity. There was a 

very low amount of primary intraparticle porosity within the chambers of rare foraminifera. Poorly to 

moderately connected moderate secondary mouldic porosity had developed from the complete to rarely 

incomplete dissolution of fragments of mollusc shells (Fig. 5a, 5c, 5e). These pores range from <100 up to 

1300μm long. A minor amount of this porosity has been occluded by non-ferroan calcite, mildly ferroan calcite 

and mildly ferroan dolomite crystals, with occurrence preferentially in the larger mouldic pores. 

For the sandy molluscan packstone, primary porosity was largely restricted to localised intergranular 

porosity within the sandstone patches, where it was visually estimated at 5%, with a trace of primary 

intraparticle porosity within foraminifera chambers. Minor primary interparticle porosity within the packstone 

domains had been solution enhanced and a trace of primary intraparticle porosity had been preserved within the 

packstone. Moderately connected secondary mouldic porosity, visually estimated at 15%, was created from the 

complete dissolution of aragonitic bioclasts within the packstone (Fig. 4c). Early biomoulds had been 

completely occluded by non-ferroan calcite spar mosaics.  

Productive carbonate reservoirs are mainly characterized by secondary porosity (Esteban & Taberner, 

2003), and according to Eichenseer et al., (1999), shallow burial dissolution and dolomitization are the Pinda 

group’s carbonate reservoir porosity creation mechanisms. The porosity deductions from the analysed samples 

in this study is in good agreement with the earlier studies, revealing dolomitization as an efficient porosity 

inhibitor within the Pinda group. 

 

V. Discussion 
5.1 DEPOSITIONAL SETTING 

Micritized skeletal fragments were due to low energy lagoonal sedimentation (Beigi et al., 2017). The 

fourth or fifth order sequences within transgressive tracts of low energy ramps were characterized by packstone 

and wackestone sedimentation along with a dominance of bioclastic sediments (Burchette and Wright 1992), 

and anoxic conditions were observed due to the lack of benthic organisms along with an assemblage of 

gastropod-ostracod-foraminifera and bivalves, and well preserved fish remains (Flugel 2004). Hence, the facies 

indicate a low energy lagoonal sedimentation dominated by anoxic and slow sedimentation conditions within 

the transgressive tract of the oolitic-siliciclastic ramp, with benthic rotalinid observed within the arkosic 

sandstone lending credence to Eichenseer et al., (1999) deduction of anoxic sediments within the ramp mixing 

with aerobic siliciclastic sediments derived from a delta system.  

 

5.2 DIAGENESIS 

Diagenesis was proposed as starting with the development of pyrite framboids within the micritic 

matrix and the chambers of foraminifera, with the pyrite later replaced by microcrystalline hematite (Fig. 5b). 

Low temperature hydrothermal minerals like pyrite and hematite were emplaced during burial stage dissolution 

(Xu et al., 2017). The micritic matrix later recrystallizes to non-ferroan calcite 5μm microspar, was followed by 

dissolution of aragonitic shells. The next stage involved the precipitation of either blocky non ferroan medium 

calcite crystals or non-ferroan dolomite rhombs within the moldic pores formed from continued bioclast 
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dissolution. Calcite and dolomite emplacement within the study area was due to change in seawater salinity 

from evaporation during sea level lowering (Eichenseer et al. 1999). 

 

5.3     RESERVOIR QUALITY 

The reservoir quality was very poor for the sandy molluscan-metazoan-pelletal packstone with porosity 

created by biomoulds later reduced by calcite cementation. Reservoir quality within the arkosic sandstone was 

poor due to its widespread recrystallized microspar matrix, with a measured permeability of 20mD higher than 

can be explained by thin section, and microspar matrix which displays patchy microporosity. Reservoir quality 

was also poor within the lightly sandy recrystallized bioclastic wackestone due to the wackestone texture and 

low porosity, with moderate porosity occurring in the biomoulds having a permeability restricted by their poor 

to moderate connectivity. Reservoir quality for the sandy molluscan packstone is fair, having been generated by 

mollusc shell dissolution and degraded by calcite cementation. Its measured porosity of 13.9% could be due to 

minor microporosity within the sandstone domains.  

 

VI. Conclusion 
Petrographic analysis and SEM imaging used to describe four facies within the oolitic- siliciclastic 

ramp offshore Democratic Republic of Congo, revealed a prevalence of lagoon sedimentation with deltaic 

intercalations. Diagenetic controls on reservoir quality were found in moldic porosity occluded by calcite or 

dolomite cementation due to the lowering of sea levels, with detected fair reservoir quality linked to sandstone 

microporosity. The study provides a preliminary insight into influences of sedimentological processes on 

reservoir quality within the ramp for future reservoir characterization.  
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